High-dimensional additive hazards models and the Lasso

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LASSO Method for Additive Risk Models with High Dimensional Covariates

1 Summary. The additive risk model is a useful alternative to the proportional hazards model. It postulates that the hazard function is the sum of the baseline hazard function and the regression function of covariates. In this article, we investigate estimation in the additive risk model with right censored survival data and high dimensional covariates. A LASSO (least absolute shrinkage and sel...

متن کامل

Oracle Inequalities and Selection Consistency for Weighted Lasso in High-dimensional Additive Hazards Model

The additive hazards model has many applications in high-throughput genomic data analysis and clinical studies. In this article, we study the weighted Lasso estimator for the additive hazards model in sparse, high-dimensional settings where the number of time-dependent covariates is much larger than the sample size. Based on compatibility, cone invertibility factors, and restricted eigenvalues ...

متن کامل

High-Dimensional Sparse Additive Hazards Regression

High-dimensional sparse modeling with censored survival data is of great practical importance, as exemplified by modern applications in high-throughput genomic data analysis and credit risk analysis. In this article, we propose a class of regularization methods for simultaneous variable selection and estimation in the additive hazards model, by combining the nonconcave penalized likelihood appr...

متن کامل

LASSO ISOtone for High Dimensional Additive Isotonic Regression

Additive isotonic regression attempts to determine the relationship between a multi-dimensional observation variable and a response, under the constraint that the estimate is the additive sum of univariate component effects that are monotonically increasing. In this article, we present a new method for such regression called LASSO Isotone (LISO). LISO adapts ideas from sparse linear modelling t...

متن کامل

High - Dimensional Generalized Linear Models and the Lasso

We consider high-dimensional generalized linear models with Lipschitz loss functions, and prove a nonasymptotic oracle inequality for the empirical risk minimizer with Lasso penalty. The penalty is based on the coefficients in the linear predictor, after normalization with the empirical norm. The examples include logistic regression, density estimation and classification with hinge loss. Least ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Statistics

سال: 2012

ISSN: 1935-7524

DOI: 10.1214/12-ejs681